Δευτέρα, 10 Ιανουαρίου 2011

ΔΙΑΛΕΞΗ 8 ONE WAY ANOVA


Η ανάλυση διακύμανσης με ένα παράγοντα (one way Analysis Of Variance) είναι παρόμοια με το t-test, αλλά επιτρέπει στον ερευνητή να συγκρίνει μέσους όρους από περισσότερα από δυο δείγματα (επίπεδα της ανεξάρτητης μεταβλητής). Π.χ. θέλουμε να συγκρίνουμε τη μέση επίδοση των φοιτητών ανάλογα με το μορφωτικό επίπεδο των γονιών τους, θέλουμε να συγκρίνουμε τη μέση τιμή των στάσεων των φοιτητών απέναντι στους Η/Υ ανάλογα με τον τόπο μόνιμης κατοικίας τους κ.τ.λ. Η διατύπωση των υποθέσεων ενός ερευνητή γενικά έχει την εξής μορφή:
Μηδενική μορφή (Η0): οι μέσοι όροι των  ομάδων (παραπάνω από δυο) δεν διαφέρουν μεταξύ τους
Εναλλακτική υπόθεση (Η1): κάποιοι από τους μέσους όρους διαφέρουν μεταξύ τους

ΔΙΑΛΕΞΗ 7 ANOVA


Η ανάλυση της διακύμανσης (ANalysis Of VArianceANOVA) είναι μία στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ’ ένα σύνολο δεδομένων διασπάται στις επιμέρους συνιστώσες της με στόχο την κατανόηση της σημαντικότητας των διαφορετικών πηγών προέλευσής της. Η ανάπτυξη της μεθοδολογίας οφείλεται στον θεμελιωτή της σύγχρονης στατιστικής επιστήμης, άγγλο στατιστικό Sir Ronald Aylmer Fisher (1890-1962). Στην πραγματικότητα η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων καταλλήλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς σχεδιασμούς.
          Τα δεδομένα ενός δείγματος ανάλογα με την προέλευσή τους διακρίνονται σε παρατηρήσεις (observational sampling) η σε πειραματικά (designed sampling). Στην πρώτη κατηγορία ο στατιστικός ερευνητής απλά παρατηρεί τις τιμές που εμφανίζονται χωρίς να έχει δυνατότητα επέμβασης στις αντίστοιχες μεταβλητές. Αντίθετα στη δεύτερη κατηγορία ο στατιστικός ερευνητής προσπαθεί να ελέγξει τα επίπεδα μιάς η περισσοτέρων ανεξάρτητων (independent) μεταβλητών προκειμένου να προσδιορίσει την επίδραση που έχουν πάνω στην υπό μελέτη μεταβλητή που καλείται εξαρτημένη (dependent) η απόκριση (response). Για παράδειγμα, απόκριση μπορεί να είναι η βαθμολογία στην εξέταση του μαθήματος της στατιστικής, ο όγκος των πωλήσεων μιάς επιχείρησης η το συνολικό εισόδημα μιάς οικογένειας κατά τη διάρκεια του έτους.

ΔΙΑΛΕΞΗ 6 CHI SQUARE


Ποιοτική μεταβλητή, εξετάζει την αναλογία σε περισσότερες στις 3+ τιμές.

Σχεδιάγραμμα θεωρίας διελέξεων 1-5

1. Εισαγωγή στο SPSS
2. Κωδικοποίηση μεταβλητών
3. One sample t-test
4. Indipendent sample t-test
5. Paired samples t-test

3.
  One sample t test (Μια ομάδα)
Εξετάζει το μέσο όρο του δείγματος με αυτόν του πληθυσμού, αν το γνωρίζουμε ή μια τιμή που ορίζουμε (test value).


4.

Independent Samples t-test
(Independent measures, or independent means)

Η συχνότερα απαντώμενη μορφή ελέγχου t


Χρησιμοποιείται:

Για τη σύγκριση των μέσων όρων δύο ανεξάρτητων δειγμάτων. Έχουμε δύο επίπεδα της ανεξάρτητης μεταβλητής και κάθε επίπεδο περιλαμβάνει διαφορετικούς συμμετέχοντες.  

(όταν αυτή η διαφορά είναι στατιστικά σημαντική θεωρούμε ότι τα δύο δείγματα ανήκουν σε διαφορετικούς πληθυσμούς, και δεν οφείλεται σε τυχαίο σφάλμα δειγματοληψίας)



5.

Paired samples t-test
(Dependent means, related samples t-test)

Eξετάζουμε τη διαφορά μεταξύ των μέσων όρων δύο γκρουπ που θεωρούμε ότι ανήκουν στον ίδιο πληθυσμό (είτε έχουμε ένα γκρουπ και κάνουμε επαναλαμβανόμενες μετρήσεις στα ίδια άτομα, είτε έχουμε δύο γκρουπ τα οποία έχουμε σχηματίσει με κάποια διαδικασία ταιριάσματος, έχουν δηλαδή τα ίδια χαρακτηριστικά). 


t =
Παρατηρούμενη μέση διαφορά μεταξύ των δειγμάτων
-
αναμενόμενη μέση διαφορά μεταξύ των πληθυσμών (0 αν η Η0 ισχύει)
Εκτίμηση του τυχαίου σφάλματος των διαφορών μεταξύ των δύο δειγμάτων

(df = n-1)

Η τυπική απόκλιση των διαφορών των μέσων όρων (τυπικό σφάλμα) είναι ένα μέτρο του πόση διακύμανση υπάρχει μεταξύ των διαφορετικών σκορ. Η τυπική απόκλιση συνεπώς αντιπροσωπεύει τη μή συστηματική διακύμανση των σκορ σε ένα πείραμα.
Εδώ εξετάζουμε διαφορές μεταξύ ζευγών τιμών για τον κάθε συμμετέχοντα, δηλαδή διαφορές μεταξύ συνθηκών για τα ζεύγη τιμών του κάθε συμμετέχοντα (differences between conditions per participant). 

ΔΙΑΛΕΞΕΙΣ 1-5


Γενική παρουσίαση
Εκτός από τα βασικά menu (file, edit, view) στο SPSS, βρίσκουμε:
·         Data, για την επεξεργασία των στοιχείων
·         Transform, για την επεξεργασία των  μεταβλητών
·         Analyze, για την στατιστική επεξεργασία των δεδομένων
·         Graphs, για τη δημιουργία διαγραμμάτων

Συλλογή δεδομένων
Μετά τη συλλογή εισάγουμε τις τιμές σε ένα αρχείο που δημιουργούμε στο SPSS.
·         Κάθε απάντηση στο ερωτηματολόγιο
·         Κάθε στοιχείο του τεστ
·         Κάθε στοιχείο παρατήρησης
είναι μία μεταβλητή

Εισαγωγή δεδομένων           
Μετά τη δημιουργία του φακέλου, ορίζουμε τις μεταβλητές.
Σε κάθε μεταβλητή στο Variable View:
·         δίνουμε ένα όνομα (name)
·         ορίζουμε τον τύπο (type)
·         δίνουμε ένα τίτλο (label)
·         ονομάζουμε τις τιμές (values) και ορίζουμε τις missing values
Μετά τη δημιουργία του αρχείου μπορούμε:
·         να το χωρίσουμε σε μέρη (split)
·         να ενώσουμε δύο αρχεία (merge)

Συχνότητες
Μετά την εισαγωγή των τιμών μπορούμε να υπολογίζουμε τις συχνότητες για κάθε μεταβλητή.
·         Απλή (frequencies)
·         Ομαδοποιημένη (recode για το range)
·         Διαγράμματα (επιλογή στις συχνότητες) (steam and leaf / boxplot)

Δείκτες Κεντρικής τάσης
·         Μέσος όρος ή Μέση τιμή (Mean)
·         Διάμεσος (Median): η τιμή της μεταβλητής που χωρίζει τις μετρήσεις στη μέση
·         Δεσπόζουσα τιμή(Mode): η τιμή της μεταβλητής με τη μεγαλύτερη συχνότητα

Δευτέρα, 29 Νοεμβρίου 2010

SPSS2

SPSS1

ΕΙΣΑΓΩΓΙΚΟ ΒΙΝΤΕΟ ΣΤΟ SPSS

ΤΙ ΕΙΝΑΙ ΤΟ SPSS - ΤΙ ΕΞΕΤΑΖΕΙ Η ΣΤΑΤΙΣΤΙΚΗ

Το SPSS είναι ένα στατιστικό πακέτο ανάλυσης δεδομένων, το οποίο προσφέρει στο χρήστη δυνατότητες για δημιουργία αναφορών, ανάλυση και μοντελοποίηση δεδομένων καθώς και για γραφική αναπαράσταση τους. Διαθέτει πολλές στατιστικές συναρτήσεις για ανάλυση δεδομένων μέσα από ένα εύχρηστο γραφικό περιβάλλον.
Με την βοήθεια του SPSS όλα τα στάδια της αναλυτικής διαδικασίας ολοκληρώνονται κάτω από ένα ενοποιημένο περιβάλλον εργασίας καλύπτοντας την ανάλυση από άκρο σε άκρο (Πηγή: spss.gr)
Η Στατιστική είναι επιστήμη που επιχειρεί να εξαγάγει γνώση χρησιμοποιώντας εμπειρικά δεδομένα. Βασίζεται στη χρήση της στατιστικής θεωρίας, ενός κλάδου των εφαρμοσμένων μαθηματικών. Στη στατιστική, η τυχαιότητα και η απροσδιοριστία ορίζονται στα πλαίσια της θεωρίας πιθανοτήτων. Η πρακτική της στατιστικής περιλαμβάνει την σχεδίαση, συλλογή και ερμηνεία δεδομένων που προκύπτουν απο αβέβαιες παρατηρήσεις. Επειδή η στατιστική αποσκοπεί στην εξαγωγή των «καλύτερων» πληροφοριών απο τα διαθέσιμα δεδομένα, κατατάσσεται απο μερικούς σαν κλάδος της θεωρίας των αποφάσεων.